organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Butylbenzimidazolium nitrate

Jin-Cheng Feng,^a Yong-Ling Bian,^b Qing-Xiang Liu,^a* Xiu-Mei Wu^a and Iian-Hua Guo^a

^aCollege of Chemistry and Life Sciences, Tianjin Normal University, Tianjin 300387, People's Republic of China, and ^bHebei North University, Zhangjiakou 075000, People's Republic of China Correspondence e-mail: qxliu@eyou.com

Received 16 June 2007; accepted 17 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.115; data-to-parameter ratio = 14.0.

The title salt, $C_{11}H_{15}N_2^+ \cdot NO_3^-$, was prepared from benzimidazole by alkylation with *n*-butane iodide followed by reaction with nitric acid. In the crystal structure, $N-H \cdots O$ hydrogen bonds between the 1-butylbenzimidazolium cations and nitrate anions are observed.

Related literature

For related literature, see: Juan & Lee (1999); Kurdziel & Glowiak (2000); Losier & Zaworotko (1996); Ockwig et al. (2005); Sundberg & Martin (1974).

Experimental

Crystal data

 $C_{11}H_{15}N_2^+ \cdot NO_3^ M_{\rm m} = 237.26$ Monoclinic, $P2_1/c$ a = 5.4051 (19) Åb = 16.885 (6) Å c = 13.626 (5) Å $\beta = 100.439 (4)^{\circ}$

V = 1223.0 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 (2) K 0.24 \times 0.22 \times 0.20 mm

Data collection

Bruker APEXII CCD area-detector	6471 measured reflections
diffractometer	2168 independent reflections
Absorption correction: multi-scan	1667 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.015$
$T_{\min} = 0.784, T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	155 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
2168 reflections	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdots A}$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O3	0.86	1.87	2.7177 (19)	168

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project was supported by the National Science Foundation of China (project grant No. 20672081) and the Natural Science Foundation of Tianjin (07JCYBJC00300).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2066).

References

Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Juan, C. M. R. & Lee, B. (1999). Coord. Chem. Rev. 183, 43-80.

Kurdziel, K. & Glowiak, T. (2000). Polyhedron, 19, 2183-2188.

Losier, P. & Zaworotko, M. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 2779-2781.

Ockwig, N. W., Delgado-Friderichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-180.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471-482.

supplementary materials

Acta Cryst. (2007). E63, o3566 [doi:10.1107/S1600536807034885]

1-Butylbenzimidazolium nitrate

J.-C. Feng, Y.-L. Bian, Q.-X. Liu, X.-M. Wu and J.-H. Guo

Comment

In crystal engineering the most important driving forces are coordination, (Losier & Zaworotko, 1996 and Ockwig *et al.*, 2005.) however, some weak interactions, such as hydrogen bonding (Juan & Lee, 1999.) often affect the structures of complexes, and they can further link discrete subunits or low-dimentional entities into high-dimensional supramolecular networks. Imidazole groups play important roles in biological systems and constitute most of the metal binding sites of metal-loenzymes (Sundberg & Martin, 1974). We are interested in the benzimidazole compounds with hydrogen bonds. Herein, we report the synthesis and crystal structure of 1-butylbenzimidazolium nitrate (2). Benzimidazole was reacted with n-butane iodide to form 1-butylbenzimidazole (1), and 1-butylbenzimidazole was further reacted with nitric acid to afford 1-butylbenzimidazolium nitrate (2). The crystals of (2) suitable for X-ray diffraction were obtained by evaporating slowly a CH₃OH solution at room temperature. In the molecular structure of 2 (Figure 1), the N(1)—C(1), N(1)—C(7), N(2)—C(6) and N(2)—C(7) bond distances are 1.3846 (19), 1.315 (2), 1.3897 (19) and 1.323 (2) Å, respectively, which are similar to those observed in 1-allylimidazole (Kurdziel *et al.*, 2000.), and there exists N1—H1···O3 hydrogen bonds between 1-butylbenzimidazolium ion and nitrate (Table 1).

Experimental

A 1,4-dioxane solution (50 ml) of benzimidazole (3.662 g, 31.000 mmol) was added to a suspension of oil-free sodium hydride (1.364 g, 34.000 mmol) in 1, 4-dioxane (50 ml) and stirred for 1 h at 90°C. Then a 1, 4-dioxane (50 ml) solution of n-butane iodide (5.152 g, 28.000 mmol) was added dropwise to above the solution. The mixture was stirred for 22 h at 90°C, and a brown solution was obtained. The solvent was removed with a rotary evaporator and H₂O (100 ml) was added to the residue. Then the solution was extracted with CH₂Cl₂ (100 ml), and the extracting solution was dried with anhydrous MgSO₄. After removing CH₂Cl₂, a yellow liquid of 1-butylbenzimidazole was obtained. Yield: 4.591 g (85%). 1-butylbenzimidazole (2.000 g, 9.603 mmol) was reacted with nitric acid to afford 1-butylbenzimidazolium nitrate (2) as a pale yellow solid. Yield: 2.614 g (96%); mp: 258–260°C. Anal. Calcd for C₁₁H₁₅N₃O₃: C 55.69, H 6.37, N 17.71%; found: C 55.48, H 6.22, N 17.65%.

Refinement

All H atoms were initially located in a difference Fourier map. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Perspective view of 2 and anisotropic displacement parameters depicting 30% probab-

Fig. 2. The formation of the title salt.

1-Butylbenzimidazolium nitrate

Crystal data

$C_{11}H_{15}N_2^+ \cdot NO_3^-$	$F_{000} = 504$
$M_r = 237.26$	$D_{\rm x} = 1.289 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 5.4051 (19) Å	Cell parameters from 2013 reflections
b = 16.885 (6) Å	$\theta = 2.4 - 26.8^{\circ}$
c = 13.626 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 100.439 \ (4)^{\circ}$	T = 293 (2) K
V = 1223.0 (7) Å ³	Block, colourless
Z = 4	$0.24 \times 0.22 \times 0.20$ mm

Data collection

Bruker APEXII CCD area-detector diffractometer	2168 independent reflections
Radiation source: fine-focus sealed tube	1667 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.015$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.784, \ T_{\max} = 1.000$	$k = -20 \rightarrow 15$
6471 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_0^2) + (0.0597P)^2 + 0.1736P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
2168 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
155 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.1856 (3)	0.36499 (9)	0.29577 (11)	0.1054 (6)
O2	-0.0556 (3)	0.30020 (9)	0.37516 (12)	0.1024 (5)
O3	0.1610 (2)	0.39744 (7)	0.44602 (8)	0.0701 (4)
N1	0.3501 (2)	0.53711 (8)	0.39341 (9)	0.0571 (3)
H1	0.3124	0.4905	0.4113	0.068*
N2	0.3537 (2)	0.66503 (7)	0.38025 (9)	0.0538 (3)
N3	0.0971 (3)	0.35307 (8)	0.37095 (11)	0.0645 (4)
C1	0.5190 (3)	0.55428 (9)	0.33119 (10)	0.0517 (4)
C2	0.6668 (3)	0.50653 (11)	0.28269 (12)	0.0650 (5)
H2	0.6646	0.4516	0.2878	0.078*
C3	0.8173 (3)	0.54485 (13)	0.22651 (12)	0.0732 (5)
H3A	0.9206	0.5150	0.1932	0.088*
C4	0.8196 (3)	0.62714 (13)	0.21798 (12)	0.0706 (5)
H4	0.9242	0.6504	0.1791	0.085*
C5	0.6726 (3)	0.67470 (11)	0.26513 (11)	0.0612 (4)
Н5	0.6735	0.7295	0.2589	0.073*
C6	0.5219 (3)	0.63639 (9)	0.32282 (10)	0.0509 (4)
C7	0.2568 (3)	0.60384 (10)	0.42069 (12)	0.0584 (4)
H7	0.1392	0.6075	0.4626	0.070*
C8	0.2926 (3)	0.74849 (9)	0.39348 (13)	0.0637 (4)
H8A	0.1384	0.7517	0.4203	0.076*
H8B	0.2636	0.7746	0.3290	0.076*
C9	0.4994 (3)	0.79099 (10)	0.46253 (13)	0.0652 (4)
H9A	0.6576	0.7822	0.4402	0.078*
H9B	0.5142	0.7690	0.5291	0.078*
C10	0.4517 (3)	0.87944 (10)	0.46674 (13)	0.0683 (5)

supplementary materials

H10A	0.5992	0.9045	0.5056	0.082*
H10B	0.4293	0.9007	0.3996	0.082*
C11	0.2286 (4)	0.90059 (13)	0.5109 (2)	0.1015 (7)
H11A	0.0784	0.8840	0.4668	0.152*
H11B	0.2242	0.9569	0.5203	0.152*
H11C	0.2390	0.8745	0.5741	0.152*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1618 (15)	0.0780 (10)	0.0898 (10)	-0.0088 (10)	0.0584 (10)	-0.0149 (8)
02	0.1119 (11)	0.0737 (10)	0.1213 (12)	-0.0362 (9)	0.0200 (9)	-0.0161 (8)
03	0.0881 (8)	0.0599 (7)	0.0618 (7)	-0.0150 (6)	0.0126 (6)	-0.0055 (6)
N1	0.0680 (8)	0.0483 (7)	0.0534 (7)	-0.0099 (6)	0.0071 (6)	0.0019 (6)
N2	0.0558 (7)	0.0485 (7)	0.0546 (7)	-0.0020 (6)	0.0032 (6)	-0.0037 (6)
N3	0.0762 (9)	0.0448 (8)	0.0725 (9)	0.0043 (7)	0.0137 (7)	-0.0009 (7)
C1	0.0577 (8)	0.0498 (9)	0.0440 (8)	-0.0039 (7)	-0.0004 (6)	-0.0023 (6)
C2	0.0713 (10)	0.0591 (10)	0.0595 (9)	0.0054 (8)	-0.0016 (8)	-0.0123 (8)
C3	0.0664 (11)	0.0934 (15)	0.0593 (10)	0.0034 (10)	0.0101 (8)	-0.0177 (9)
C4	0.0690 (11)	0.0902 (14)	0.0527 (9)	-0.0150 (10)	0.0114 (8)	-0.0031 (9)
C5	0.0687 (10)	0.0612 (10)	0.0509 (8)	-0.0116 (8)	0.0030 (8)	0.0030 (7)
C6	0.0540 (8)	0.0516 (9)	0.0441 (8)	-0.0031 (7)	0.0003 (6)	-0.0013 (6)
C7	0.0594 (9)	0.0603 (10)	0.0549 (9)	-0.0078 (8)	0.0086 (7)	-0.0034 (7)
C8	0.0625 (9)	0.0507 (9)	0.0733 (10)	0.0062 (7)	-0.0002 (8)	-0.0058 (8)
C9	0.0614 (9)	0.0581 (10)	0.0718 (10)	0.0037 (8)	0.0003 (8)	-0.0085 (8)
C10	0.0772 (11)	0.0544 (10)	0.0723 (11)	-0.0053 (8)	0.0110 (9)	-0.0009 (8)
C11	0.0955 (15)	0.0696 (14)	0.147 (2)	0.0099 (11)	0.0421 (15)	-0.0130 (13)

Geometric parameters (Å, °)

1.2233 (19)	C4—H4	0.9300
1.2241 (18)	С5—С6	1.390 (2)
1.2645 (18)	С5—Н5	0.9300
1.315 (2)	С7—Н7	0.9300
1.3846 (19)	C8—C9	1.506 (2)
0.8600	C8—H8A	0.9700
1.323 (2)	C8—H8B	0.9700
1.3897 (19)	C9—C10	1.518 (2)
1.466 (2)	С9—Н9А	0.9700
1.384 (2)	С9—Н9В	0.9700
1.391 (2)	C10-C11	1.486 (3)
1.375 (2)	C10—H10A	0.9700
0.9300	C10—H10B	0.9700
1.394 (3)	C11—H11A	0.9600
0.9300	C11—H11B	0.9600
1.369 (2)	C11—H11C	0.9600
108.83 (13)	N1—C7—N2	110.52 (14)
125.6	N1—C7—H7	124.7
	1.2233 (19) 1.2241 (18) 1.2645 (18) 1.315 (2) 1.3846 (19) 0.8600 1.323 (2) 1.3897 (19) 1.466 (2) 1.384 (2) 1.391 (2) 1.375 (2) 0.9300 1.394 (3) 0.9300 1.369 (2) 108.83 (13) 125.6	1.2233 (19) $C4-H4$ $1.2241 (18)$ $C5-C6$ $1.2645 (18)$ $C5-H5$ $1.315 (2)$ $C7-H7$ $1.3846 (19)$ $C8-C9$ 0.8600 $C8-H8A$ $1.323 (2)$ $C8-H8B$ $1.3897 (19)$ $C9-C10$ $1.466 (2)$ $C9-H9A$ $1.384 (2)$ $C9-H9B$ $1.391 (2)$ $C10-C11$ $1.375 (2)$ $C10-H10A$ 0.9300 $C11-H11A$ 0.9300 $C11-H11B$ $1.369 (2)$ $C11-H11C$ $108.83 (13)$ $N1-C7-N2$ 125.6 $N1-C7-H7$

C1—N1—H1	125.6	N2—C7—H7	124.7
C7—N2—C6	108.15 (13)	N2—C8—C9	112.12 (13)
C7—N2—C8	125.78 (14)	N2—C8—H8A	109.2
C6—N2—C8	126.07 (13)	С9—С8—Н8А	109.2
O1—N3—O2	121.91 (16)	N2—C8—H8B	109.2
O1—N3—O3	119.27 (15)	С9—С8—Н8В	109.2
O2—N3—O3	118.81 (15)	H8A—C8—H8B	107.9
C2-C1-N1	132.22 (15)	C8—C9—C10	112.37 (14)
C2—C1—C6	121.68 (15)	С8—С9—Н9А	109.1
N1—C1—C6	106.10 (13)	С10—С9—Н9А	109.1
C3—C2—C1	116.24 (17)	С8—С9—Н9В	109.1
С3—С2—Н2	121.9	С10—С9—Н9В	109.1
C1—C2—H2	121.9	Н9А—С9—Н9В	107.9
C2—C3—C4	122.03 (17)	C11—C10—C9	114.04 (16)
С2—С3—НЗА	119.0	C11—C10—H10A	108.7
С4—С3—НЗА	119.0	С9—С10—Н10А	108.7
C5—C4—C3	122.05 (16)	C11-C10-H10B	108.7
C5—C4—H4	119.0	С9—С10—Н10В	108.7
C3—C4—H4	119.0	H10A—C10—H10B	107.6
C4—C5—C6	116.22 (16)	C10-C11-H11A	109.5
С4—С5—Н5	121.9	C10-C11-H11B	109.5
С6—С5—Н5	121.9	H11A—C11—H11B	109.5
C5—C6—N2	131.83 (15)	C10-C11-H11C	109.5
C5—C6—C1	121.78 (14)	H11A—C11—H11C	109.5
N2—C6—C1	106.39 (13)	H11B—C11—H11C	109.5
C7—N1—C1—C2	179.94 (16)	C8—N2—C6—C1	-179.51 (13)
C7—N1—C1—C6	0.11 (16)	C2—C1—C6—C5	0.2 (2)
N1—C1—C2—C3	-179.41 (15)	N1-C1-C6-C5	-179.93 (12)
C6—C1—C2—C3	0.4 (2)	C2-C1-C6-N2	179.97 (13)
C1—C2—C3—C4	-0.6 (2)	N1—C1—C6—N2	-0.18 (15)
C2—C3—C4—C5	0.1 (3)	C1—N1—C7—N2	0.00 (17)
C3—C4—C5—C6	0.5 (2)	C6—N2—C7—N1	-0.12 (17)
C4—C5—C6—N2	179.65 (15)	C8—N2—C7—N1	179.58 (13)
C4—C5—C6—C1	-0.7 (2)	C7—N2—C8—C9	105.17 (18)
C7—N2—C6—C5	179.90 (15)	C6—N2—C8—C9	-75.18 (19)
C8—N2—C6—C5	0.2 (2)	N2-C8-C9-C10	173.05 (14)
C7—N2—C6—C1	0.19 (15)	C8—C9—C10—C11	65.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N1—H1…O3	0.86	1.87	2.7177 (19)	168

